Sugar-regulated cation channel formed by an insect gustatory receptor.

نویسندگان

  • Koji Sato
  • Kana Tanaka
  • Kazushige Touhara
چکیده

Insects sense the taste of foods and toxic compounds in their environment through the gustatory system. Genetic studies using fruit flies have suggested that putative seven-transmembrane gustatory receptors (Grs) expressed in gustatory sensory neurons are required for responses to specific tastants. We reconstituted sugar responses of Bombyx mori Gr-9 (BmGr-9), a silkworm Gr, in two heterologous expression systems. Xenopus oocytes or HEK293T cells expressing BmGr-9 selectively responded to D-fructose with an influx of extracellular Ca(2+) and a nonselective cation current conductance in a G protein-independent manner. Outside-out patch-clamp recording of BmGr-9-expressing cell membranes provides evidence supporting the hypothesis that BmGr-9 constitutes a ligand-gated ion channel. The fructose-activated current associated with BmGr-9 was suppressed by other hexoses, including glucose and sorbose. The activation and inhibition of insect Gr ion channels may be the molecular basis for the decoding system that discriminates subtle differences in sweet taste. Finally, Drosophila melanogaster Gr43a (DmGr43a), a BmGr-9 ortholog, also responded to D-fructose, suggesting that DmGr43a relatives appear to compose the family of fructose receptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological and Functional Characterization of an Insect Gustatory Receptor

Insect gustatory receptors are predicted to have a seven-transmembrane structure and are distantly related to insect olfactory receptors, which have an inverted topology compared with G-protein coupled receptors, including mammalian olfactory receptors. In contrast, the topology of insect gustatory receptors remains unknown. Except for a few examples from Drosophila, the specificity of individu...

متن کامل

Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons.

Mammalian sweet, bitter, and umami taste is mediated by a single transduction pathway that includes a phospholipase C (PLC)beta and one cation channel, TRPM5. However, in insects such as the fruit fly, Drosophila melanogaster, it is unclear whether different tastants, such as bitter compounds, are sensed in gustatory receptor neurons (GRNs) through one or multiple ion channels, as the cation ch...

متن کامل

Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies

Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with who...

متن کامل

Subunit contributions to insect olfactory receptor function: channel block and odorant recognition.

Insect olfactory receptors are heteromeric ligand-gated ion channels composed of at least one common subunit (Orco) and at least one subunit that confers odorant specificity. Little is known about how individual subunits contribute to the structure and function of the olfactory receptor complex. We expressed insect olfactory receptors in Xenopus oocytes to investigate 2 functional features, ion...

متن کامل

Evidences for a new cation channel in the brain mitochondrial inner membrane

Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 28  شماره 

صفحات  -

تاریخ انتشار 2011